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Abstract

Aleph models continuum electrostatic and steady and transient thermal fields using a finite-element
method. Much work has gone into expanding the core solver capability to support enriched mod-
eling consisting of multiple interacting fields, special boundary conditions and two-way interfacial
coupling with particles modeled using Aleph’s complementary particle-in-cell capability. This
report provides quantitative evidence for correct implementation of Aleph’s field solver via order-
of-convergence assessments on a collection of problems of increasing complexity. It is intended to
provide Aleph with a pedigree and to establish a basis for confidence in results for more challeng-
ing problems important to Sandia’s mission that Aleph was specifically designed to address.
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Summary

A series of challenge problems was used to perform a code verification study for Aleph’s finite-
element-method (FEM)-based field solver. Aleph’s ability to solve each problem correctly was
determined by assessing order-of-covergence using refinement of either mesh size ∆x or time step
size ∆t. Table 1 summarizes the observed orders-of-accuracy along with the expected theoretical
values. The parameter values reported in the table correspond to expressions for numerical error
of the forms E∆x = C1(∆x)p and E∆t = C2(∆t)q. The last column indicates whether or not the

Challenge Key Capability Tested p p q q Reg.
Problem Obs. Th. Obs. Th. Test

1 Simple Steady State * * - - N
2 Constant Source Term 1.996 2.0 - - Y
3 Spatially-Dependent Material 1.85 2.0 - - Y
4 Thermally-Dependent Material 1.87 2.0 - - Y

(1-Way Coupling)
5 Simple Transient - - * * Y
6 Transient Linear Conduction - - 1.02 1.0 Y
7 Analytic Transient Flux BC - - 0.992 1.0 Y
8 Physical Conduction into 1D Slab 2.06 2.0 0.98 1.0 Y
9 Particle-Based & Emission Transient Flux BC - - 1.11 1.0 Y

10 2D version of problem 2 - - 2.000 2.0 Y
11 3D Parallel Transient version of problem 6 1.73 2.0 0.98 1.0 Y

Table 1. Aleph field solver challenge problem order-of-
convergence summary

challenge problem is included in Aleph’s regression test suite. The asterisks indicate challenge
problems for which more stringent requirements are used to assess correctness. If correctly im-
plemented, Aleph’s FEM solver should exactly capture the known spatial solution to Problem 1,
and it does. If Aleph’s time integration method is implemented correctly, the transient solution for
Problem 5 should be captured exactly, and it is.

We chose this approach to verify correctness of the Aleph code based on current best-practices
in verification within computational science and engineering [4]:

“What is gained by verifying the order-of-accuracy of a PDE code? Briefly, the answer
is that a code whose order-of-accuracy has been verified is free of any coding mistakes
that prevent one from computing the correct answer.”
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In summary, Aleph is shown to provide reasonably good agreement with theoretical behavior
and can therefore be expected to give credible results for more complex problems using the models
and methods considered in this study.

These studies were performed using the Aleph release candidate code base reflected in the
tagged version-1.0rc1 in the Aleph subversion repository located at
svn+ssh://development.sandia.gov/usr/local/svn/arcmodel/aleph/trunk/.
Meshes were generated using the journal files contained in the Aleph examples directory,
examples/verification/meshes, along with cubit version 14.1 64 bit Build 390841.
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Chapter 1

1D Verification

Aleph embodies a mutually coupled continuum-to-particle capability. Continuum modeling con-
sists of electrostatic potential and transient thermal conduction subject to a rich variety of boundary
conditions. To model these, Aleph uses the Finite Element Method (FEM) to solve various expres-
sions of the Poisson equation discretized over 1D, 2D and 3D unstructured mesh domains [2]. The
following sections present results for a sequence of increasingly complex challenge problems that
together provide strong evidence for the correct implementation of models and solution algorithms
in Aleph.

1.1 Problem 1: Trivial Steady Linear Heat Conduction

Perhaps the simplest physical model to consider is that of steady linear heat conduction with fixed
boundary temperatures. In the absence of a thermal source, the governing equation is

d2T
dx2 = 0 (1.1)

and simple values can be chosen for boundary conditions as

T (0) = 0
T (1) = 1

This particular problem admits the exact solution T (x) = x. The linear FEM basis functions used by
Aleph together with default solver settings should produce a discrete numerical solution equivalent
to the exact solution limited only by machine precision regardless of the number of elements used
to discretize the problem. Two simulations were run using meshes containing 3 elements (∆x =
1/3) and 1000 elements (∆x = 0.001). Numerical values at the nodes in the mesh for the latter
were exactly in agreement with the analytic result, and numerical values for the former coarse
mesh showed only a single difference in the least significant digit associated with representing the
value of 2/3 as a decimal, i.e. T∆x=1/3 = [0,0.333333333333333,0.666666666666667,1].

13



1.2 Problem 2: Steady Linear Heat Conduction with Source

The next challenge problem includes a spatially varying source term chosen to admit the analytic
solution, T (x) = msin(nπx) where m and n are adjustable parameters that essentially control solu-
tion amplitude and curvature. We apply the Laplace operator of eq. (1.1) to this solution to obtain
the corresponding source term used in Aleph. This leads to the following form for this challenge
problem:

d2T
dx2 = −mn2

π
2 sin(nπx) (1.2)

with consistent fixed Dirichlet boundary conditions,

T (0) = 0
T (1) = msin(nπ) (1.3)

The presence of the non-zero source term makes this problem more challenging than the previous
problem because the piecewise linear FEM solution cannot exactly capture the analytic solution
due to the solution curvature. However, the FEM solution should converge to the exact solution as
the mesh is refined and should do so as O(∆x2). To assess whether or not Aleph’s FEM solver is
correct, this problem was solved on a sequence of uniform (constant element size) meshes char-
acterized by ∆x = 0.01,0.005,0.002,0.001,0.0001. Nominal values for the parameters were used,
i.e. m = 1.4 and n = 3.5. A comparison of numerical and exact solutions for this problem are
shown in Figure 1.1 and provide initial evidence of correct convergence behavior. To quantify this,
a measure for error in the FEM solutions was computed as the L2-norm of the difference between
the FEM solution and the exact solution, i.e. E ≡ ||T (x)−T∆x(x)||2. These error values are plotted
against the mesh size ∆x in Figure 1.2 along with a best-fit to the assumed functional form for
discretization error E = C(∆x)p. For this challenge problem, Aleph’s FEM field solver exhibits
an order-of-accuracy of 1.996, which agrees very well with the expected theoretical value of 2.0.

The input files associated with this calculation are in the Aleph repository at
examples/verification/1d/T only.
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1.3 Problem 3: Electrostatic Potential with Spatially Varying
Permittivity

This challenge problem builds on the previous one by introducing a spatially varying material
property into the Poisson equation governing the electrostatic potential field V . In this case, we
choose to represent the material permittivity ε as follows:

ε = ε0m2 sin2(nπx) (1.4)

Not coincidentally, this is equivalent to ε = ε0T 2 if we employ the exact solution for the tempera-
ture field used in the previous challenge problem. As before, we define an exact solution, this time
for the potential, V = acos(bπx). We then apply the Laplace operator to this exact solution and use
the expression for permittivity to generate a corresponding source term. This challenge problem
takes the following form:

d
dx

(
ε

dV
dx

)
= abε0m2

π
2 [

2nsin(nπx)cos(nπx)sin(bπx)+
bsin(nπx)sin(nπx)cos(bπx)] (1.5)

The corresponding boundary conditions are:

V (0) = a
V (1) = acos(bπ) (1.6)

The coefficients, ε0,a,b,m and n are arbitrary parameters that specify the exact solution and per-
mittivity.

In addition to exercising variable material properties, this challenge problem also exercises
Aleph code infrastructure supporting generalized material models and source terms.

An assessment of Aleph’s correctness is achieved as before by performing a sequence of runs
on meshes of various refinements and determining discretization error by differencing with exact
solution values. This problem requires a finer collection of meshes to be used because of the
increased solution curvature associated with the spatially varying permittivity. Meshes consisted of
∆x = 0.002,0.001,0.0002,0.0001, and the following coefficient values were used, [ε0,a,b,m,n] =
[1.5,1.8,2.5,1.4,3.5]. The exact solution and representative numerical solutions are shown in
Figure 1.3, and the order-of-accuracy results are shown in Figure 1.4. This challenge problem
exhibits an order-of-accuracy of 1.85, and was deemed satisfactory compared with the theoretical
value of 2.0.

The input files associated with this calculation are in the Aleph repository at
examples/verification/1d/V only.
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1.4 Problem 4: One-Way Coupled Steady Temperature and
Electrostatic Potential

This challenge problem combines the previous two to demonstrate Aleph’s ability to correctly
drive a coupled multiphysics problem. In particular, the thermal problem of eqs. (1.2) and (1.3) is
solved and the resulting temperature field is then used to compute the permittivity as

ε = ε0T 2 (1.7)

This permittivity is used to solve the same electrostatic problem defined in eqs. (1.5) and (1.6).

The important aspects of this challenge problem mainly concern code and solver infrastructure
required to construct, configure and orchestrate multiple field solvers. Aleph underwent several
iterations of implementation and debugging to arrive at a credible capability that also includes the
ability to pass field data among solvers (which can be applied to different parts of the domain)
and the ability to utilize passed field data in the computation kernels of dependent field solvers.
When performed properly, the results for this challenge problem should encompass those of the
previous two with very similar mesh convergence behavior. Note that some slight differences are
expected due to the way field data is passed and used within dependent solver assembly kernels,
e.g., mapping node values to Gauss points introduces differences due to interpolation. Exact and
numerical solutions are shown in Figure 1.5.

The order-of-accuracy results for both the temperature and electrostatic potential fields are
shown in Figure 1.6. This challenge problem exhibits orders-of-accuracy of 2.00 and 1.87 for
temperature and potential fields, respectively, and both agree at least as well with a theoretical
value of 2.0 as the previous single-field versions of this challenge problem. It is noteworthy that
the coefficients in the error expressions are higher here than for the single-field error expressions
in the previous two challenge problems. This is expected and reflects the manner in which field
solver data is transferred and used within the computation kernels of dependent field solvers, e.g.
interpolation to Gauss points.

The input files associated with this calculation are in the Aleph repository at
examples/verification/1d/VT coupled oneway nodes.
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1.5 Problem 5: Trivial Transient Linear Heat Conduction

This challenge problem introduces time dependence into the thermal conduction model as follows:

ρcp
∂T
∂t
− k

∂2T
∂x2 = Q̇ (1.8)

and uses the following initial and boundary conditions:

∂T
∂x

(t,0) = 0

∂T
∂x

(t,1) = 0

T (0,x) = 300.0 (1.9)

The thermal material properties ρ,cp and k represent density, heat capacity and thermal conduc-
tivity and are assigned values of 2.7kg/m3, 1.2m2/(s2 ·K) and 1.0W/(m ·K), respectively. A
constant uniform power source is applied as Q̇ = 1000W/m3.

For time-dependent field solves, Aleph uses an explicit forward Euler method which is ac-
curate to O(∆t). The particular boundary conditions for this challenge problem are chosen to
produce a spatially constant solution that evolves linearly in time. In the absence of any spa-
tial gradients, Aleph’s time integration method should capture this exactly and with no stability
restrictions regardless of the size of time steps. To test this, the following time step sizes were
used ∆t = 0.01,0.001,0.0001,0.00001,0.000001s to run the simulation to 0.02s. Numerical re-
sults were checked to ensure a flat spatial profile and values were compared to the exact solution
of T (0.02,x) = 306.1728395. Numerical values for all time step sizes agreed perfectly (to the last
significant digit) with the exact solution value.

The input files associated with this calculation are in the Aleph repository at
examples/verification/1d/constant volumetric heating source term.

23



1.6 Problem 6: Transient Linear Heat Conduction

This challenge problem assesses non-trivial time dependence by using the model of eq. (1.8) with
Q̇ = 0 and the following initial and boundary conditions:

T (t,0) = 0
T (t,1) = 0
T (0,x) = sin(mπx) (1.10)

The density, heat capacity and thermal conductivity were all assigned a value of 1.0, and the
adjustable parameter m = 1.0. The problem was run for a sequence of time steps consisting of
∆t = 0.002,0.001,0.0005,0.0002,0.0001 using a mesh of ∆x = 0.01. A comparison of numerical
and exact solutions for this problem are shown in Figure 1.7. The amplified region near x = 0.5
shows a difference between exact and numerical solutions that appears to vary directly with the
time step size ∆t. To quantify this, the error of the numerical solutions was computed as E ≡
||T (0.02,x)−T∆t,∆x=0.01(0.02,x)||2 using the exact solution T (t,x) = e−π2t sin(πx). This error is
plotted against the time step size in Figure 1.8 along with a best-fit to the assumed functional form
for discretization error E = C(∆t)p. The observed order-of-accuracy for Aleph’s time integrator
is p = 1.02, which is in good agreement with the expected theoretical value of 1.0.

The input files associated with this calculation are in the Aleph repository at
examples/verification/1d/trans T dirichlet.
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Figure 1.7. Comparison of numerical and exact solutions for var-
ious mesh refinement levels for Challenge Problem 6 at t = 0.02.
The bottom plot shows the difference between exact and numeri-
cal solutions to vary directly with the time step size ∆t, and this is
quantified in Figure 1.8.
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Figure 1.8. Observed order-of-accuracy for Challenge
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1.7 Problem 7: Transient Thermal Flux Boundary Condition

This challenge problem is the same as Problem 6 but with the x = 1 boundary condition replaced
by a Neumann condition that admits the same analytic solution, i.e. T (t,x) = e−π2m2t sin(mπx).
Again using m = 1.0 leads to the following boundary and initial conditions

T (t,0) = 0 (1.11)
∂T
∂x

(t,1) = −πe−π2t (1.12)

T (0,x) = sin(πx) (1.13)

The importance of this problem lies in demonstrating Aleph’s ability to treat time-dependent Neu-
mann boundary conditions. The numerical and exact solutions are shown in Figure 1.9, and the
error is plotted against the time step size in Figure 1.10 along with a best-fit to the assumed func-
tional form for discretization error E = C(∆t)p. The solutions are nearly indistinguishable from
those in Problem 6 as they should be. The observed order-of-accuracy is p = 0.99, which is in
good agreement with the expected theoretical value of 1.0.

The input files associated with this calculation are in the Aleph repository at
examples/verification/1d/trans T neumann.
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quantified in Figure 1.10.
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1.8 Problem 8: Semi-Infinite Conduction with Constant Sur-
face Heat Flux

This challenge problem is intended to provide a more physical example than the previous problems.
Physically meaningful values and SI units are used to model heat conduction into a semi-infinite
slab heated on one side by a constant thermal heat flux. Model parameters are summarized in Table
1.1.

Parameter Value & Units Description
ρ 2.7 kg/m3 density
k 0.4 W/(m ·K) thermal conductivity
cp 1.2 m2/(s2 ·K) heat capacity
Ti 300 K initial temperature
qs 5.0×104 W/m2 surface heat flux
α k/(ρ · cp) = 0.123 m2/s thermal diffusivity

Table 1.1. Parameters used in Challenge Problem 8.

This problem has the following analytic solution:

T (t,x) = Ti +
2qs

√
αt
π

k
exp
(
−x2

4αt

)
− qsx

k
erfc

(
x

2
√

αt

)
(1.14)

This problem represents a well-studied physically meaningful problem [3] and is a departure
from previous challenge problems which contrive analytic solutions and assume simplistic material
property values. Figures 1.11 and 1.12 show relatively coarse (in ∆x and ∆t) Aleph solutions
compared to the exact solution over space and time, respectively. While these results appear good,
rigorous code verification must rely on more quantitative underpinnings. Accordingly, we present
the order-of-convergence behavior in Figure 1.13 for time step size and in Figure 1.14 for mesh
size. Using ∆x = 0.002 m the observed order-of-accuracy for ∆t convergence is p∆t = 0.975.
Using ∆t = 2.0× 10−5 s, the ∆x convergence is p∆x = 2.06. These convergence rates compare
favorably with the expected theoretical values of 1.0 and 2.0, respectively.

The input files associated with this calculation are in the Aleph repository at
examples/verification/1d/trans T neumann particles with SI units.
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Figure 1.11. T (0.02,x) using mesh ∆x = 0.01 m and timestep
∆t = 0.0001 s for Challenge Problem 8.
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Figure 1.12. T (t,0) using mesh ∆x = 0.01 m and timestep
∆t = 0.0001 s for Challenge Problem 8.
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Figure 1.13. Observed order-of-accuracy for ∆t using ∆x =
0.002 m for Challenge Problem 8. The dashed line is a least-
squares fit to the numerical error.
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1.9 Problem 9: Combined Particle-Driven and Heatloss Tran-
sient Thermal Flux Boundary Conditions

This challenge problem incorporates SI units along with models for both surface heating due to
impacting particles and surface cooling due to thermal particle emission to produce numerically
equivalent time-dependent thermal flux behavior to problem 7. In addition, the ability of Aleph to
correctly treat multiple impacting particle types is tested by creating two different types of particles.
A predetermined flux of both types is injected into a domain next to the thermal conduction region.
Particle velocities are specified as a function of time such that the kinetic energy imparted at impact
with the thermal domain is numerically twice that of eq. (1.12). This source of thermal flux is then
offset by a heatloss three times the value of eq. (1.12) by activating a thermal emission model in
Aleph based on the Antoine equation. The Antoine coefficients are chosen to be functions of time
to produce a net thermal flux numerically equivalent to eq. (1.12).

To derive the expressions for the two competing thermal fluxes, we recall eq. (1.8) and express
the case for no thermal source, Q̇ = 0 as

∂T
∂t
−α

∂2T
∂x2 = 0 (1.15)

where α = k/(ρCp) = 1.0 m2/s. Because we seek an exact solution comparable to that for problem
7 but now driven by competing thermal flux physical models, we recast the boundary and initial
conditions of problem 7 into the following form:

T (t,−1) = 0
∂T
∂x

(t,0) = −πT0

L
e−(π/L)2αt

T (0,x) = T0

(
1+ sin(

π(x+1)
L

)
)

(1.16)

where L = 1.0 (m) is the size of the 1D thermal domain which has been shifted left by 1.0 compared
to problem 7, and T0 = 1.0 (K) is chosen as the initial temperature. Together, these parameter values
produce the same temperature solution as in problem 7 with the only difference being a temperature
shift of 1.0 (K). The shift is required for this problem to allow admissible temperatures to be used
with the Antoine equation, i.e., T > 0. As defined, this challenge problem admits the exact solution

T (t,x) = T0

[
1+ e−(π/L)2αt sin

(
π(x+1)

L

)]
, x ∈ [−1,0] (1.17)

which has units of K and reduces to the shifted exact solution of problem 7 for the chosen values
of T0, L and α. The corresponding temperature gradient at the boundary between the thermal and
plasma domains is given by:

∂T
∂x

(t,0) = −πT0

L
e−(π/L)2αt (1.18)
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which has units of K/m and reduces to the expression in eq. (1.12) for our chosen parameter values.

To derive the source of thermal flux due to impacting particles, we express the thermal flux
into the thermal domain based on the kinetic energy of the impacting particles. For a collection of
n particles having mass m (kg) and velocity magnitude v (m/s) impacting a surface of area S (m2)
over an increment of time ∆t (s), the magnitude of thermal flux qp is expressed as

qp = n
mv2

2S∆t
(1.19)

and has units of W/m2. This quantity is related to the Neumann boundary condition in eq. (1.18)
as follows:

n ·q = ex ·
(
−k

∂T
∂x

ex

)
= qp (1.20)

in which the impacting particles provide a source of energy at the boundary. From this equation,
the time-dependent particle velocity magnitude (m/s) is given by,

v =

√
2πSkT0∆t

nmL
e−

1
2 (π/L)2αt (1.21)

So long as all particles traverse the plasma domain in a single time step, n injected particles with
mass m and velocity given by eq. (1.21) would produce the exact magnitude Neumann boundary
condition of eq. (1.12). We enforce this condition by choosing Lp such that v∆t� Lp where Lp is
the length of the plasma domain. This effectively enforces deterministic particle behavior in order
to accurately assess order-of-convergence.

An opposing heat flux associated with thermal particle emission is specified using the Antoine
equation which expresses the vapor pressure PV as follows [1],

log10(PV ) = A+
B
T

+C log10(T )+
D
T 3 (1.22)

This vapor pressure corresponds to a mass flux with magnitude φe given by

φe =
PV fc√

2πmkBT
(1.23)

where kB is Boltzmann’s constant [m2-kg/(s2-K)], and fc is a pressure conversion factor needed
for φe to have units of kg/(m2-s). The mass flux is then converted to a thermal flux of magnitude
qe (W/m2) using the heat of vaporization Hv (J/kg) as follows:

qe = (Hv +2kBT )φe (1.24)

We can relate this equation to eq. (1.18) as follows:

n ·q = ex ·
(
−k

∂T
∂x

ex

)
= qe (1.25)

If we assign Antoine coefficients B = C = D = 0, we can then solve for the Antoine coefficient A
needed to produce a heat flux equal in magnitude to that of eqs. (1.12) and (1.20). We also use the
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fact that T (t,0) = T0 for this challenge problem. Together, these result in the following expression
for A,

A = log10

[(
kπT0
√

2πmkBT0

(Hv +2kBT0) fcL

)
e−(π/L)2αt

]
(1.26)

The importance of this challenge problem lies in demonstrating Aleph’s ability to treat aggre-
gate, time-dependent Neumann boundary conditions involving particle-based events, e.g., thermal
absorption and emission. Accordingly, we construct a net thermal heat flux numerically equivalent
to eq. (1.12) by imposing a thermal flux driven by two different particle types having the same
mass and number and both types injected with velocity specified using eq. (1.21). This incoming
heat flux is offset by using eq. (1.24). The final form of the boundary condition for this challenge
problem represents a net time-dependent, particle-based Neumann boundary condition equal in
magnitude and direction to eq. (1.12) and is expressed as

n ·q = ex ·
(
−k

∂T
∂x

ex

)∣∣∣∣
x=0

= 2qp−3qe (1.27)

Figure 1.15 shows the exact and numerical solutions which are nearly indistinguishable from
those for problems 6 and 7 except for the vertical shift of 1.0 in T and the shift of the domain
from [0,1] to [−1,0]. The vertical shift is needed to avoid zero values of T for which the logarithm
is undefined, and the shift of the domain reflects particles injected from the right at x = 1 and
impacting the thermal domain surface at x = 0. Figure 1.16 shows the error plotted against the
time step size along with a best-fit to the assumed functional form for discretization error using a
mesh with ∆x = 0.01. The observed order-of-accuracy for Aleph’s time integrator is p = 1.11,
which is in good agreement with the expected theoretical value of 1.0.

The input files associated with this calculation are in the Aleph repository at
examples/verification/1d/trans T neumann multi flux.
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Figure 1.15. Comparison of numerical and exact solutions for
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numerical solutions to vary directly with the time step size ∆t (s),
and this is quantified in Figure 1.16.
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Chapter 2

2D & 3D Verification

This chapter extends the previous collection of challenge problems to higher spatial dimensions.
These challenge problems exercise different parts of the Aleph code than that exercised for 1D
problems because 1D meshes are not natively supported by the Exodus library used by Aleph.
Both 2D and 3D meshes are natively supported by the Exodus library, and the code is the same for
both. Therefore, we have very high confidence that code verified for either a 2D or 3D problem
preserves correct behavior for both.

2.1 Problem 10: 2D Steady Linear Heat Conduction with Source

The first departure from 1D is a 2D analogue of Challenge Problem 2. The governing model
equation is now expressed more generally, and the source term is constructed to test the variation
of the solution in both spatial dimensions. This is expressed as follows:

∇
2T = mπ

2(n2 + l2)sin(nπx)sin(lπy) (2.1)

with compatible boundary conditions

T (0,y) = 0
T (1,y) = msin(nπ)sin(lπy)
T (x,0) = 0
T (x,1) = msin(nπx)sin(lπ)

For this verification study, parameter values of m = 1.4, n = 0.5 and l = 2.0 were chosen to
produce different solution structure in the x and y-directions. This steady 2D problem admits
the exact solution T (x) = msin(nπx)sin(lπy), and the FEM solution for the coarsest mesh con-
sidered is shown in Figure 2.2. Exact and numerical solutions are shown in Figure 2.3 along
the line x = 0.5. Note that the x-values plotted correspond to an equally-spaced interpolation
of the numerical solutions along the y-direction at x = 0.5 performed using the Ensight visual-
ization software package version 9.2.1(c). For assessing numerical error, the same measure is
used as before, i.e., E ≡ ||T (x,y)− T∆x,∆y(x,y)||2, and a sequence of meshes characterized by
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∆x = ∆y = 0.02,0.01,0.005,0.002. The order-of-convergence was determined via a fit to the as-
sumed functional form for discretization error E = C(h)p where h is a representative mesh size
based on ∆x and ∆y. The coarsest mesh is shown in Figure 2.1. For this problem, h = ∆x = ∆y.
The FEM error along with the best fit are shown in Figure 2.4. For this challenge problem,

Figure 2.1. Coarsest 2D mesh of unit square with origin at lower-
left and ∆x = ∆y = 0.02.

Aleph’s FEM field solver exhibits an order-of-accuracy of 2.000, in exact agreement with the the-
oretical value.

The input files associated with this calculation are in the Aleph repository at
examples/verification/2d/T only.
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Figure 2.2. FEM solution on coarse mesh for Challenge
Problem 10.
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Figure 2.3. Comparison of numerical and exact solutions for
various mesh refinement levels for Challenge Problem 10. Plot-
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2.2 Problem 11: 3D Steady & Parallel Transient Linear Heat
Conduction

This challenge problem extends the previous problem to time-dependent 3D and exercises the
parallel algorithm features of Aleph’s FEM solver. The problem is constructed to produce an
analytic solution with spatial structure that varies in each of the three dimensions. The problem
definition is as follows,

ρcp
∂T
∂t
− k∇

2T = 0 (2.2)

with compatible initial and boundary conditions as

T (t,0,y,z) = 0
T (t,1,y,z) = 0
T (t,x,0,z) = 0
T (t,x,1,z) = 0
T (t,x,y,0) = 0
T (t,x,y,1) = 0
T (0,x,y,z) = sin(nπx)sin(lπy)sin(kπz)

where ρ,cp and k are all assigned values of 1.0; and n, l and k are 1, 2 and 3, respectively. On
a spatial domain consisting of a unit cube, this choice of parameters admits the homogeneous
Dirichlet boundary conditions. The exact solution used to assess numerical errors is T (x) =
e−π2t(n2+l2+k2) sin(nπx)sin(lπy)sin(kπz). Unstructured tetrahedral meshes characterized by h =
∆x = ∆y = ∆z = 0.2,0.1,0.05,0.033 and 0.025 are used with a fixed time step of ∆t = 2.0×10−5

to assess spatial order-of-convergence. Representative numerical solutions on the finest 3D mesh
are shown in Figure 2.5. A comparison of the exact and numerical solutions for the different ∆x
are shown in Figure 2.6 where the parameter s is the distance along the line from (x,y,z) = (0,0,0)
to (1,1,1). Interpolations were performed using the Ensight visualization software package version
9.2.1(c). Temporal order-of-convergence is determined using ∆t = 0.01,0.005,0.002,0.001,0.0005
on the mesh characterized by h = 0.033. A comparison of the exact and numerical solutions for the
different ∆t are shown in Figure 2.7 where s is the same. Numerical errors are plotted along with
the best-fit curves for temporal and spatial orders-of-convergence in Figures 2.8 and 2.9, respec-
tively. The spatial order-of-convergence was found to be 1.73 for the problem with n = 1, l = 2
and k = 3. The deviation from the theoretical value of 2.0 was suspected to be due to the degree
of solution curvature, particularly in the z-direction. Accordingly, another order-of-convergence
study was performed using n = l = k = 1 and is included in Figure 2.9. This easier version of the
problem exhibits improved order-of-convergence, even above the theoretical value which is not
uncommon for mesh convergence studies of transient problems.

A test of Aleph’s parallel solve capability is implicit in the temporal convergence study in
which each run was performed on 4 cores on a previously decomposed mesh with h = 0.033.
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For this challenge problem, Aleph’s FEM field solver exhibits temporal order-of-accuracy of
p∆t = 0.98 and spatial order-of-accuracy p∆x = 1.73.

The input files associated with this calculation are in the Aleph repository at
examples/verification/3d/trans T dirichlet.
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Figure 2.5. FEM solution on fine mesh at t = 0.00838 for Chal-
lenge Problem 11 at t = 0.02. The mesh has been clipped with
planes at x = 0.5 (top) and z = 0.5 (bottom).
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